Feed stock

Feed stock for Biodiesel Production


  1. Palm Stearin: Palm stearin is the solid fraction of palm oilthat is produced by partial crystallization at controlled temperature.
  2. Used Cooking oil: UCOcan be used as an alternative fuelin diesel engines . When vegetable oil is used directly as a fuel, in either modified or unmodified equipment, it is referred to as straight vegetable oil (SVO) or pure plant oil (PPO). Conventional diesel engines can be modified to help ensure that the viscosity of the vegetable oil is low enough to allow proper atomization of the fuel. This prevents incomplete combustion, which would damage the engine by causing a build-up of carbon. Straight vegetable oil can also be blended with conventional diesel or processed into biodiesel or bioliquids for use under a wider range of conditions.
  3. Tallow oil: Tallow can be used for the production of biodieselin much the same way as oils from plants are currently used.Because tallow is derived from animal by-products, which have little to no value to commercial food industries, it avoids some of the food vs. fuel debate
  4. Jatropha seed oil: Jatrophais a genusof flowering plants in the spurge family, Euphorbiaceae. The name is derived from the Greek words ἰατρός (iatros), meaning “physician”, and τροφή (trophe), meaning “nutrition”, hence the common name physic nut. Another common name is nettlespurge. It contains approximately 170 species of succulent plants, shrubs and trees (some are deciduous, like Jatropha curcas). Most of these are native to the Americas, with 66 species found in the Old World. Plants produce separate male and female flowers. As with many members of the family Euphorbiaceae, Jatropha contains compounds that are highly toxic. Jatropha species have traditionally been used in basketmaking, tanning and dye production. In the 2000s, one species, Jatropha curcas, generated interest as an oil crop for biodiesel production.
  5. Karanja seed oil: Karanja seed oil is an oil made from seeds of Millettia pinnata
  6. Mahuva seed oil
  7. Acid oil: Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles.
  8. Palm Fatty acid: Production of fatty acid methyl ester (FAME) from palm fatty acid distillate (PFAD) having high free fatty acids (FFA) was investigated in this work. Batch esterifications of PFAD were carried out to study the influence of: including reaction temperatures of 70–100 °C, molar ratios of methanol to PFAD of 0.4:1–12:1, quantity of catalysts of 0–5.502% (wt of sulfuric acid/wt of PFAD) and reaction times of 15–240 min. The optimum condition for the continuous esterification process (CSTR) was molar ratio of methanol to PFAD at 8:1 with 1.834 wt% of H2SO4 at 70 °C under its own pressure with a retention time of 60 min. The amount of FFA was reduced from 93 wt% to less than 2 wt% at the end of the esterification process. The FAME was purified by neutralization with 3 M sodium hydroxide in water solution at a reaction temperature of 80 °C for 15 min followed by transesterification process with 0.396 M sodium hydroxide in methanol solution at a reaction temperature of 65 °C for 15 min. The final FAME product met with the Thai biodiesel quality standard, and ASTM D6751-02.
  9. Rice bran Fatty acid: A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 °C. Depending on the initial FFA content of oil, 55–90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 °C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as γ-oryzanol (16–18%), mixture of phytosterol, tocol and steryl ester (19–21%).
  10. Rape seed oil: Transesterification reaction of rapeseed oil in supercritical methanol was investigated without using any catalyst. An experiment has been carried out in the batch-type reaction vessel preheated at 350 and 400°C and at a pressure of 45–65 MPa, and with a molar ratio of 1:42 of the rapeseed oil to methanol. It was consequently demonstrated that, in a preheating temperature of 350°C, 240 s of supercritical treatment of methanol was sufficient to convert the rapeseed oil to methyl esters and that, although the prepared methyl esters were basically the same as those of the common method with a basic catalyst, the yield of methyl esters by the former was found to be higher than that by the latter. In addition, it was found that this new supercritical methanol process requires the shorter reaction time and simpler purification procedure because of the unused catalyst.
  11. Cotton seed oil
  12. Rubber seed oil
  13. Fish oil
  14. Castor oil